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Introduction
Infectious diseases spread along human, ani-

mal, plant, or computer networks. Understand-
ing properties of these networks gives insight into
analyzing how the disease spreads, and so recent
work has investigated the impact of network prop-
erties on epidemic spread. [1, 3, 4]. Most stud-
ies assume an averagetransmissibility(the prob-
ability that an infection of nodei will result in
infection of the neighboring nodej), but it is
well-known that the transmissibility is heteroge-
neously distributed. In this study we investigate
the impact of this heterogeneity and derive rig-
orous bounds on the size and probability of epi-
demics for given average transmissibilities. The
bounds we find give insight into optimal strate-
gies to prevent or reduce the impact of epidemics.

We study epidemics spreading on large random
networks, with fixed degree distribution. The
nodes are divided into three classes:

• Susceptible: Nodes which may become in-
fected if a neighbor is infected.

• Infected: Nodes which are infected and may
infect susceptible neighbors.

• Recovered: Nodes which have been infected
but are no longer. These nodes may not infect
or be infected.

The infectiousness of an individual depends on a
number of properties such as the levels of virus
shedding or whether an employer allows sick
days. Similarly the susceptibility of an individ-
ual depends on vaccination or exposure history
and personal protective measures. The transmis-
sibility Tuv from nodeu to v is T(Iu,Sv) where
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Schematic representation of Gi , Gscc, and Go. All
nodes in Gscc can reach any other node in Gscc.

Iu andSv represent all factors affecting the infec-
tiousness ofu and susceptibility ofv.

A standard approach to epidemic modeling is to
take a single infected individualu (theindex case)
and consider its neighbors. Each neighborv is in-
fected with probabilityTuv. The index case then
recovers. We then consider the newly infected
nodes and their susceptible neighbors, repeating
until no infected nodes remain.

An equivalent approach is more computation-
ally intense, but provides a useful theoretical
framework. We consider each nodeu separately
and determinea priori whetheru would infect its
neighborv if u becomes infected whilev is sus-
ceptible. If so, we place a directed edge fromu
to v. The edges of the original network are either
lost or replaced with a directed edge, which may
be bidirected as in figure1. The index case is
then chosen, and all nodes in its out-component
are infected. The size of the outbreak is equal
to the out-component size. Given large enough
average transmissibility some nodes have an out-
component limited in size only by the size of
the network. We define these large outbreaks
to be epidemics. In this case,Gi (the giant in-
component),Gscc (the giant strongly-connected
component) andGo (the giant out component) ex-
ist as shown in figure1. Epidemics occur if the
initial infection is in eitherGi or Gscc. The prob-
ability P of an epidemic is the fraction of nodes
in Gi ∪Gscc, while at leading order the attack rate
A (the fraction infected) is the fraction of nodes
in Gscc∪Go. We note that interchanging the di-
rection of the arrows interchangesGi with Go, so
any method which calculates the probability of an
epidemic can also calculate the size.
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Comparison of theory (lines) with simulation
(symbols) for an Erd̋os–Ŕenyi network. With fixed
infection rate, we set the recovery time to beτ = 5
(△), τ = 0 or ∞ (♦), τ = 2 or 8 (�), τ = 1 or 10
(◦), and finally a constant recovery rate (×). P
changes, butA does not.

Calculating Epidemic Probability
The random networks we study have few short

loops, and so early in the outbreak we may as-
sume it spreads on an infinite tree. We use gen-
erating functions [5] which encode a distribution
of non-negative integersk a function by f (x) =

∑∞
k=0 pkxk. We calculate a generating function

f (x,g) for the number of infections in generation
g. The probability the epidemic dies out by gen-
erationg is f (0,g). In the limit of infinite system
size,P = 1− limg→∞ f (0,g).

The detailed analysis is in [2]. We find rigorous
upper and lower bounds onP in terms of the av-
erage transmissibility,T0. For a fixed value ofT0,
P is maximized if all nodes have probabilityT0 to
infect a random neighbor. Conversely,P is mini-
mized if a fractionT0 of the nodes infect all their
neighbors while the remaining nodes infect none.
Equivalent statements hold for susceptibility and
A . We demonstrate our results for Erdős–Ŕenyi
and scale-free networks in the figures.

Discussion
The bounds derived in [2] show that maximiz-

ing the variance in infectiousness for given av-
erage transmissibility minimizes an epidemic’s
probability. Similarly maximizing the variance in
susceptibility minimizes its size. Consider two
strategies with the same average effect, but one
has heterogeneous impact on infectiousness (e.g.,
incomplete contact tracing) while the other has
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Comparison of theory (curves) with simulation
(symbols) for Tuv = 1−exp(−αIuSv) in a scale-
free network with a cutoff at high degree. The
theoretical bounds are in dashed bold. The distri-
butions are♦: P(I ) = δ(I −1), P(S ) = 0.5δ(S −
0.001)+0.5δ(S −1); ×: P(I ) = 0.5δ(I −0.1)+
0.5δ(I −1), P(S ) = 0.2δ(S −0.1)+0.8δ(S −1);
◦: P(I ) = 0.5δ(I −0.1)+ 0.5δ(I −1), P(S ) =
0.8δ(S − 0.011) + 0.2δ(S − 1); �: P(I ) =
0.3δ(I −0.001)+0.7δ(I −1), P(S ) = δ(S −1).

heterogeneous impact on susceptibility (e.g., in-
complete vaccination). Which is optimal depends
on whether an outbreak is established or not.
If we seek to eliminate a rare disease, contact-
tracing outperforms vaccination. In contrast, if
we hope to reduce the impact of a widespread dis-
ease, vaccination outperforms contact tracing.
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